
   

Appendix E: RealMedia File Format (RMFF) Reference  

The Helix architecture supports RealMedia File Format (RMFF), which 
enables Helix to deliver high- quality multimedia content over a variety of 
network bandwidths. Third-party developers can convert their media 
formats into RMFF, enabling Helix Universal Server to deliver the files to 
RealPlayer or other applications built with the Helix Client and Server 
Software Development Kit. Third-party developers can thereby use Helix 
to transport content over the Internet to their own applications.  

RealMedia File Format is a standard tagged file format that uses four-
character codes to identify file elements. These codes are 32-bit, 
represented by a sequence of one to four ASCII alphanumeric characters, 
padded on the right with space characters. The data type for four-character 
codes is FOURCC. Use the HX_FOURCC macro to convert four characters 
into a four-character code.  

The basic building block of a RealMedia File is a chunk , which is a logical 
unit of data, such as a stream header or a packet of data. Each chunk 
contains the following fields:  

� Four-character code specifying the chunk identifier 

� 32-bit value specifying the size of the data member in the chunk 

� Blob of opaque chunk data 

Depending on its type, a top-level chunk can contain subobjects. This 
document describes the tagged chunks contained in RMFF, as well as the 
format of the data stored in each type of tagged chunk.  

Tagged File Formats  



  

RealMedia File Format organizes tagged chunks into a header section, a 
data section, and an index section. The organization of these tagged chunks 
is shown in the following figure.  

Sections of a RealMedia File  

  

Header Section  

Because RMFF is a tagged file format, the order of the chunks is not 
explicit, except that the RealMedia File Header must be the first chunk in 
the file. However, most applications write the standard headers into the 
file's header section. The following chunks are typically found in the header 



section of RMFF:  

� RealMedia File Header (this must be the first chunk of the file) 

� Properties Header 

� Media Properties Header 

� Content Description Header 

After the RealMedia File Header object, the other headers may appear in 
any order. All headers are required except the Index Header. The following 
sections describe the individual header objects.  

RealMedia File Header  

Each RealMedia file begins with the RealMedia File Header, which 
identifies the file as RMFF. There is only one RealMedia File Header in a 
RealMedia file. Because the contents of the RealMedia File Header may 
change with different versions of RMFF, the header structure supports an 
object version field for determining what additional fields exists. The 
following pseudo-structure describes the RealMedia File Header:  

The RealMedia File Header contains the following fields:  

object_id  

The unique object ID for a RealMedia File (.RMF ). All RealMedia 
files begin with this identifier. The size of this member is 32 bits. 

size  

The size of the RealMedia header section in bytes. The size of this 
member is 32 bits. 

object_version  

The version of the RealMedia File Header object. All files created 

RealMedia_File_Header 
{ 
  UINT32    object_id; 
  UINT32    size; 
  UINT16    object_version 
; 
  if ((object_version == 0) || (object_version == 1)) 
  { 
    UINT32   file_version; 
    UINT32   num_headers; 
  } 
} 



according to this specification have an object_version number of 0 
(zero) or 1. The size of this member is 16 bits. 

file_version  

The version of the RealMedia file. The Helix Client and Server SDK 
only covers files with a file version of either 0 (zero) or 1. This 
member is present on all RealMedia_File_Header objects with an 
object_version of 0 (zero) or 1. The size of this member is 32 bits. 

num_headers  

The number of headers in the header section that follow the RealMedia 
File Header. This member is present on all RealMedia_File_Header 
objects with an object_version of 0 (zero) or 1. The size of this 
member is 32 bits. 

Properties Header  

The Properties Header describes the general media properties of the 
RealMedia File. Components of the RealMedia system use this object to 
configure themselves for handling the data in the RealMedia file or stream. 
There is only one Properties Header in a RealMedia file. The following 
pseudo-structure describes the Properties header:  

The Properties Header contains the following fields:  

object_id  

The unique object ID for a Properties Header ('PROP'). The size of this 
member is 32 bits. 

size  

Properties 
{ 
  UINT32    object_id; 
  UINT32    size; 
  UINT16    object_version; 
  if (object_version == 0) 
  { 
    UINT32   max_bit_rate; 
    UINT32   avg_bit_rate; 
    UINT32   max_packet_size; 
    UINT32   avg_packet_size; 
    UINT32   num_packets; 
    UINT32   duration; 
    UINT32   preroll; 
    UINT32   index_offset; 
    UINT32   data_offset; 
    UINT16   num_streams; 
    UINT16   flags; 
  } 
} 



The 32-bit size of the Properties Header in bytes. The size of this 
member is 32 bits. 

object_version  

The version of the RealMedia File Header object. All files created 
according to this specification have an object_version number of 0 
(zero). The size of this member is 16 bits. 

max_bit_rate  

The maximum bit rate required to deliver this file over a network. This 
member is present on all Properties objects with an object_version 
of 0 (zero). The size of this member is 32 bits. 

avg_bit_rate  

The average bit rate required to deliver this file over a network. This 
member is present on all Properties objects with an object_version 
of 0 (zero). The size of this member is 32 bits. 

max_packet_size  

The largest packet size (in bytes) in the media data. This member is 
present on all Properties objects with an object_version of 0 (zero). 
The size of this member is 32 bits. 

avg_packet_size  

The average packet size (in bytes) in the media data. This member is 
present on all Properties objects with an object_version of 0 (zero). 
The size of this member is 32 bits. 

num_packets  

The number of packets in the media data. This member is present on 
all Properties objects with an object_version of 0 (zero). The size 
of this member is 32 bits. 

duration  

The duration of the file in milliseconds. This member is present on all 
Properties objects with an object_version of 0 (zero). The size of 
this member is 32 bits. 

preroll  

The number of milliseconds to prebuffer before starting playback. This 
member is present on all Properties objects with an object_version 
of 0 (zero). The size of this member is 32 bits. 

index_offset  

The offset in bytes from the start of the file to the start of the index 
header object. This value can be 0 (zero), which indicates that no index 



chunks are present in this file. This member is present on all Properties 
objects with an object_version of 0 (zero). The size of this member 
is 32 bits. 

data_offset  

The offset in bytes from the start of the file to the start of the Data 
Section. This member is present on all Properties objects with an 
object_version of 0 (zero). The size of this member is 32 bits. 

num_streams  

The total number of media properties headers in the main headers 
section. This member is present on all Properties objects with an 
object_version of 0 (zero). The size of this member is 16 bits. 

flags  

Bit mask containing information about this file. The following bits 
carry information—all of the rest should be zero: 

The size of this member is 16 bits. 

Media Properties Header  

The Media Properties Header describes the specific media properties of 
each stream in a RealMedia file. Components of the RealMedia system use 
this object to configure themselves for handling the media data in each 
stream. There is one Media Properties Header for each media stream in a 
RealMedia file. The following pseudo-structure describes the Media 
Properties header:  

Note: There can be a number of Data_Chunk_Headers in a 
RealMedia file. The data_offset value specifies the offset in 
bytes to the first Data_Chunk_Header. The offsets to the other 
Data_Chunk_Headers can be derived from the 
next_data_header field in a Data_Chunk_Header. 

Bit Flag Description

0 Save_EnabledIf 1, clients are allowed to save this file to disk.

1 Perfect_Play If 1, clients are instructed to use extra buffering.

2 LIve If 1, these streams are from a live broadcast.

Media_Properties 
{ 
  UINT32     object_id; 



The Media Properties Header contains the following members:  

object_id  

The unique object ID for a Media Properties Header ("MDPR"). The 
size of this member is 32 bits. 

size  

The size of the Media Properties Header in bytes. The size of this 
member is 32 bits. 

object_version  

The version of the Media Properties Header object. The size of this 
member is 16 bits. 

stream_number  

The stream_number (synchronization source identifier) is a unique 
value that identifies a physical stream. Every data packet that belongs 
to a physical stream contains the same STREAM_NUMBER . The 
STREAM_NUMBER enables a receiver of multiple physical streams to 
distinguish which packets belong to each physical stream. This 
member is present on all MediaProperties objects with an 
object_version of 0 (zero). The size of this member is 32 bits. 

max_bit_rate  

The maximum bit rate required to deliver this stream over a network. 
This member is present on all MediaProperties objects with an 
object_version of 0 (zero). The size of this member is 32 bits. 

avg_bit_rate  

The average bit rate required to deliver this stream over a network. 

  UINT32     size; 
  UINT16     object_version; 
  if (object_version == 0) 
  { 
    UINT16                      stream_number; 
    UINT32                      max_bit_rate; 
    UINT32                      avg_bit_rate; 
    UINT32                      max_packet_size; 
    UINT32                      avg_packet_size; 
    UINT32                      start_time; 
    UINT32                      preroll; 
    UINT32                      duration; 
    UINT8                       stream_name_size; 
    UINT8[stream_name_size]     stream_name; 
    UINT8                       mime_type_size; 
    UINT8[mime_type_size]       mime_type; 
    UINT32                      type_specific_len; 
    UINT8[type_specific_len]    type_specific_data; 
  } 
} 



This member is present on all MediaProperties objects with an 
object_version of 0 (zero). The size of this member is 32 bits. 

max_packet_size  

The largest packet size (in bytes) in the stream of media data. This 
member is present on all MediaProperties objects with an 
object_version of 0 (zero). The size of this member is 32 bits. 

avg_packet_size  

The average packet size (in bytes) in the stream of media data. This 
member is present on all MediaProperties objects with an 
object_version of 0 (zero). The size of this member is 32 bits. 

start_time  

The time offset in milliseconds to add to the time stamp of each packet 
in a physical stream. This member is present on all MediaProperties 
objects with an object_version of 0 (zero). The size of this member 
is 32 bits. 

preroll  

The time offset in milliseconds to subtract from the time stamp of each 
packet in a physical stream. This member is present on all 
MediaProperties objects with an object_version of 0 (zero). The 
size of this member is 32 bits. 

duration  

The duration of the stream in milliseconds. This member is present on 
all MediaProperties objects with an object_version of 0 (zero). The 
size of this member is 32 bits. 

stream_name_size  

The length of the following stream_name member in bytes. This 
member is present on all MediaProperties objects with an 
object_version of 0 (zero). The size of this member is 8 bits. 

stream_name  

A nonunique alias or name for the stream. This member is present on 
all MediaProperties objects with an object_version of 0 (zero). This 
size of this member is variable. 

mime_type_size  

The length of the following mime_type field in bytes. This member is 
present on all MediaProperties objects with an object_version of 0 
(zero). This size of this member is 8 bits. 

mime_type  



A nonunique MIME style type/subtype string for data associated with 
the stream. This member is present on all MediaProperties objects with 
an object_version of 0 (zero). This size of this member is variable. 

type_specific_len  

The length of the following type_specific_data in bytes. The 
type_specific_data is typically used by the data type renderer to 
initialize itself in order to process the physical stream. This member is 
present on all MediaProperties objects with an object_version of 0 
(zero). The size of this member is 32 bits. 

type_specific_data  

The type_specific_data is typically used by the data type renderer 
to initialize itself in order to process the physical stream. This member 
is present on all MediaProperties objects with an object_version of 
0 (zero). The size of this member is variable. 

Logical Stream Organization  

A RealMedia file can contain a higher-level grouping of physical streams. 
This grouping is called a logical stream. Logical streams contain the 
following information:  

� Identifies which physical streams are grouped together into a logical 
stream. 

� Contains name value properties that can be used to idnetify properties 
of the logical stream. (such as language, packet grouping, and so on.) 

A logical stream is represented with a Media Properties Header. The mime 
type of the physical stream is preceeded with "logical- ". For example, 
the mime type for an ASM-compatible RealAudio stream is audio/x-pn-
multirate-realaudio . A logical stream consisting of a set of 
RealAudio physical streams would therefore have the mime type 
logical-audio/x-pn-multirate-realaudio . An example of a logical 
stream is shown in the following figure.  

Logical Stream Organization  



  

In this example there is one logical stream, one low bit rate audio stream 
and one high bit rate audio stream. This results in a RealMedia file with 
three Media Property Headers and three data sections. The 
type_specific_data field of the logical stream's Media Property Header 
contains a LogicalStream structure. This structure contains all of the 
information required to interpret the logical stream and its collection of 
physical streams. The structure refers to the low bit rate and high bit rate 
audio streams. The LogicalStream structure also contains the 
data_offset s to the start of the data section for each physical stream.  

The logical stream number assigned to the logical stream is determined 
from the stream_number field in the Media Properties Header.  

There is also one special logical stream of MIME type "logical-
fileinfo " containing information about the entire file. There should only 
be one media header with this type. Behavior of players and editing tools is 
undefined if you have more than one.  

The ASM rules contained in the logical-fileinfo stream are used to 
define precisely how bandwidth will be divided between the streams in the 
file. The logical-fileinfo may also contain a name-value pair that 
specifies which stream combinations should be served to older players.  

LogicalStream Structure  

The following sample shows the LogicalStream structure:  



The LogicalStream structure contains the following fields:  

size  

The size of the LogicalStream structure in bytes. The size of this 
structure member is 32 bits. 

object_version  

The version of the LogicalStream structure. The size of this structure 
member is 16 bits. 

num_physical_streams  

The number of physical streams that make up this logical stream. The 
physical stream numbers are stored in a list immediately following this 
field. These physical stream numbers refer to the stream_number 
field found in the Media Properties Object for each physical stream 
belonging to this logical stream. The size of this structure member is 
16 bits 

physical_stream_numbers[]  

The list of physical stream numbers that comprise this logical stream. 
The size of this structure member is variable. 

data_offsets[]  

The list of data offsets indicating the start of the data section for each 
physical stream. The size of this structure member is variable. 

num_rules  

The number of ASM rules for the logical stream. Each physical stream 
in the logical stream has at least one ASM rule associated with it or it 
will never get played. The mapping of ASM rule numbers to physical 
stream numbers is stored in a list immediately following this member. 
These physical stream numbers refer to the stream_number field 
found in the Media Properties Object for each physical stream 

LogicalStream 
{ 
  ULONG32 size; 
  UINT16 object_version; 
  if (object_version == 0) 
  { 
    UINT16 num_physical_streams; 
    UINT16 physical_stream_numbers[num_physical_streams]; 
    ULONG32 data_offsets[num_physical_streams]; 
    UINT16 num_rules; 
    UINT16 rule_to_physical_stream_number_map[num_rules]; 
    UINT16 num_properties; 
    NameValueProperty properties[num_properties]; 
  } 
};  



belonging to this logical stream. The size of this structure member is 
16 bits. 

rule_to_physical_stream_map[]  

The list of physical stream numbers that map to each rule. Each entry 
in the map corresponds to a 0-based rule number. The value in each 
entry is set to the physical stream number for the rule. For example: 

This example means physical stream 5 corresponds to rule 0. All of the 
ASM rules referenced by this array are stored in the first name-value 
pair of this logical stream which must be called "ASMRuleBook" and 
be of type "string". Each rule is separated by a semicolon. 

The size of this structure member is variable. 

num_properties  

The number of NameValueProperty structures contained in this 
structure. These name/value structures can be used to identify 
properties of this logical stream (for example, language). The size of 
this structure member is 16 bits. 

properties[]  

The list of NameValueProperty structures (see NameValueProperty 
Structure below for more details). As mentionied above, it is required 
that the first name-value pair be a string named "ASMRuleBook" and 
contain the ASM rules for this logical stream. The size of this structure 
member is variable. 

NameValueProperty Structure  

The following sample shows the NameValueProperty structure:  

The NameValueProperty structure contains the following fields:  

rule_to_physical_stream_map[0] = 5  

NameValueProperty 
{ 
  ULONG32  size; 
  UINT16  object_version; 
  if (object_version == 0) 
  { 
    UINT8 name_length; 
    UINT8 name[namd_length]; 
    INT32  type; 
    UINT16 value_length; 
    UINT8 value_data[value_length]; 
  } 
}  



size  

The size of the NameValueProperty structure in bytes. The size of 
this structure member is 32 bits. 

object_version  

The version of the NameValueProperty structure. The size of this 
structure member is 16 bits. 

name_length  

The length of the name data. The size of this structure member is 8 
bits. 

name[]  

The name string data. The size of this structure member is 8 bits. 

type  

The type of the value data. This member can take on one of three 
values (any other value is undefined), as shown in the following table: 

The size of this structure member is 32 bits. 

value_length  

The length of the value data. The size of this structure member is 16 
bits. 

value_data[]  

The value data. The size of this structure member is 8 bits. 

Content Description Header  

The Content Description Header contains the title, author, copyright, and 
comments information for the RealMedia file. All text data is in ASCII 
format. The following pseudo-structure describes the Content Description 
Header:  

type Description value_length

0 32-bit unsigned integer property4

1 buffer variable

2 string variable

Content_Description 
{ 
  UINT32     object_id; 
  UINT32     size; 
  UINT16      object_version 
; 
  if (object_version == 0) 



The Content Description Header contains the following fields:  

object_id  

The unique object ID for the Content Description Header ("CONT"). 
The size of this member is 32 bits. 

size  

The size of the Content Description Header in bytes. The size of this 
member is 32 bits. 

object_version  

The version of the Content Description Header object. The size of this 
member is 16 bits. 

title_len  

The length of the title data in bytes. Note that the title data is not null-
terminated. This member is present on all Content Description Header 
objects with an object_version of 0 (zero). The size of this member 
is 16 bits. 

title  

An array of ASCII characters that represents the title information for 
the RealMedia file. This member is present on all Content Description 
Header objects with an object_version of 0 (zero). The size of this 
member is variable. 

author_len  

The length of the author data in bytes. Note that the author data is not 
null-terminated. This member is present on all Content Description 
Header objects with an object_version of 0 (zero). The size of this 
member is 16 bits. 

author  

An array of ASCII characters that represents the author information for 
the RealMedia file. This member is present on all Content Description 
Header objects with an object_version of 0 (zero). The size of this 
member is variable. 

  { 
    UINT16    title_len; 
    UINT8[title_len]  title; 
    UINT16    author_len; 
    UINT8[author_len]  author; 
    UINT16    copyright_len; 
    UINT8[copyright_len]  copyright; 
    UINT16    comment_len; 
    UINT8[comment_len]  comment; 
  } 
} 



copyright_len  

The length of the copyright data in bytes. Note that the copyright data 
is not null-terminated. This member is present on all Content 
Description Header objects with an object_version of 0 (zero). The 
size of this member is 16 bits 

copyright  

An array of ASCII characters that represents the copyright information 
for the RealMedia file. This member is present on all Content 
Description Header objects with an object_version of 0 (zero). The 
size of this member is variable. 

comment_len  

The length of the comment data in bytes. Note that the comment data 
is not null-terminated. This member is present on all Content 
Description Header objects with an object_version of 0 (zero). The 
size of this member is 16 bits. 

comment  

An array of ASCII characters that represents the comment information 
for the RealMedia file. This member is present on all Content 
Description Header objects with an object_version of 0 (zero). The 
size of this member is variable. 

Data Section  

The data section of the RealMedia file consists of a Data Section Header 
that describes the contents of the data section, followed by a series of 
interleaved media data packets. Note that the size field of the Data Chunk 
Header is the size of the entire data chunk, including the media data 
packets.  

Data Chunk Header  

The Data Chunk Header marks the start of the data chunk. There is usually 
only one data chunk in a RealMedia file; however, for extremely large files, 
there may be multiple data chunks. The following pseudostructure 
describes the Data chunk header:  

Data_Chunk_Header 
{ 
  UINT32     object_id; 
  UINT32     size; 
  UINT16      object_version; 
  if (object_version == 0) 
  { 



The Data Chunk Header contains the following fields:  

object_id  

The unique object ID for the Data Chunk Header ('DATA'). The size 
of this member is 32 bits. 

size  

The size of the Data Chunk in bytes. The size includes the size of the 
header plus the size of all the packets in the data chunk. The size of 
this member is 32 bits. 

object_version  

The version of the Data Chunk Header object. The size of this member 
is 16 bits. 

num_packets  

Number of packets in the data chunk. This member is present on all 
Data Chunk Header objects with an object_version of 0 (zero). The 
size of this member is 32 bits. 

next_data_header  

Offset from start of file to the next data chunk. A non-zero value refers 
to the file offset of the next data chunk. A value of zero means there 
are no more data chunks in this file. This field is not typically used. 
This member is present on all Data Chunk Header objects with an 
object_version of 0 (zero). The size of this member is 32 bits. 

Data Packet Header  

Following a data chunk header is num_packet data packets. These packets 
can all be from the same stream, or packets from different streams can 
follow one another. These packets, whether from the same stream or from 
different streams, should have an increasing value of timestamp. That is, 
the timestamp of a packet should be greater than or equal to the timestamp 
of the previous packet in the file.  

The following pseudo-structure describes the details of the packet:  

    UINT32    num_packets;  
    UINT32    next_data_header; 
  } 
} 

Media_Packet_Header 
{ 
  UINT16                object_version; 
  if ((object_version == 0) || (object_version == 1)) 



The Media Packet Header contains the following fields:  

object_version  

The version of the Media Packet Header object. The size of this 
member is 16 bits. 

length  

The length of the packet in bytes. This member is present on all Media 
Packet Header objects with an object_version of 0 (zero) or 1. The 
size of this member is 16 bits. 

stream_number  

The 16-bit alias used to associate data packets with their associated 
Media Properties Header. This member is present on all Media Packet 
Header objects with an object_version of 0 (zero) or 1. The size of 
this member is 16 bits. 

timeStamp  

The time stamp of the packet in milliseconds This member is present 
on all Media Packet Header objects with an object_version of 0 
(zero) or 1. The size of this member is 32 bits. 

packet_group  

The packet group to which the packet belongs. If packet grouping is 
not used, set this field to 0 (zero). This member is present on all Media 
Packet Header objects with an object_version of 0 (zero). The size 
of this member is 8 bits. 

flags  

Flags describing the properties of the packet. The following flags are 

  { 
    UINT16        length; 
    UINT16        stream_number; 
    UINT32        timestamp; 
    if (object_version == 0) 
    { 
      UINT8        packet_group; 
      UINT8        flags; 
    } 
    else if (object_version == 1) 
    { 
      UINT16        asm_rule; 
      UINT8          asm_flags; 
    } 
    UINT8[length]        data; 
  } 
  else 
  { 
    StreamDone(); 
  } 
} 



defined: 

� HX_RELIABLE_FLAG 

If this flag is set, the packet is delivered reliably.  

� HX_KEYFRAME_FLAG 

If this flag is set, the packet is part of a key frame or in some way 
marks a boundary in your data stream.  

This member is present on all Media Packet Header objects with an 
object_version of 0 (zero). The size of this member is 8 bits. 

asm_rule  

The ASM rule assigned to this packet. Only present if 
object_version equals 1. The size of this member is 16 bits. 

asm_flags  

Contains HX_ flags that dictate stream switching points. Only present if 
object_version equals 1. The size of this member is 8 bits. 

data  

The application-specific media data. This member is present on all 
Media Packet Header objects with an object_version of 0 (zero) or 
1. The size of this member is variable. 

Index Section  

The index section of the RealMedia file consists of a Index Chunk Header 
that describes the contents of the index section, followed by a series of 
index records. Note that the size field of the Index Chunk Header is the size 
of the entire index chunk, including the index records.  

Index Section Header  

The Index Chunk Header marks the start of the index chunk. There is 
usually one index chunk per stream in a RealMedia file. The following 
pseudo-structure describes the Index chunk header.  

Index_Chunk_Header 
{ 
  u_int32     object_id; 
  u_int32     size; 
  u_int16      object_version 
; 
  if (object_version == 0) 



The Index Chunk Header contains the following fields:  

object_id  

The unique object ID for the Index Chunk Header ("INDX"). The size 
of this member is 32 bits. 

size  

The size of the Index Chunk in bytes. The size of this member is 32 
bits. 

object_version  

The version of the Index Chunk Header object. The size of this 
member is 16 bits. 

num_indices  

Number of index records in the index chunk. This member is present 
on all Index Chunk Header objects with an object_version of 0 
(zero). The size of this member is 32 bits 

stream_number  

The stream number for which the index records in this index chunk are 
associated. This member is present on all Index Chunk Header objects 
with an object_version of 0 (zero). The size of this member is 16 
bits. 

next_index_header  

Offset from start of file to the next index chunk. This member enables 
RealMedia file format readers to find all the index chunks quickly. A 
value of zero for this member indicates there are no more index 
headers in this file. This member is present on all Index Chunk Header 
objects with an object_version of 0 (zero). The size of this member 
is 32 bits. 

Index Record  

The index section of a RealMedia file consists of a series of index record 
objects. Each index record contains information for quickly finding a 
packet of a particular time stamp for a physical stream. The following 
pseudo-structure describes the details of each index record:  

  { 
    u_int32     num_indices; 
    u_int16     stream_number; 
    u_int32     next_index_header; 
  } 
} 



An Index Record contains the following fields:  

object_version  

The version of the Index Record object. The size of this member is 16 
bits. 

timestamp  

The time stamp (in milliseconds) associated with this record. This 
member is present on all Index Record objects with an 
object_version of 0 (zero). The size of this member is 32 bits. 

offset  

The offset from the start of the file at which this packet can be found. 
This member is present on all Index Record objects with an 
object_version of 0 (zero). The size of this member is 32 bits. 

packet_count_for_this_packet  

The packet number of the packet for this record. This is the same 
number of packets that would have been seen had the file been played 
from the beginning to this point. This member is present on all Index 
Record objects with an object_version of 0 (zero). The size of this 
member is 32 bits. 

Metadata Section  

The metadata section of the RealMedia file consists of a tag containing a 
set of named metadata properties that describe the media file. These 
properties can be text, integers, or any binary data. The tag is preceded by a 
header that identifies the size of the entire metadata section. Following the 
tag, the footer identifies the size of the tag. Since the metadata section is 
found at the end of the file, the footer can be used to expedite seeking 
backwards. At the end of the metadata section, and the file itself, is an 
ID3v1 tag.  

Metadata Section Header  

IndexRecord 
{ 
  UINT16   object_version; 
  if (object_version == 0) 
  { 
    u_int32  timestamp; 
    u_int32  offset; 
    u_int32   packet_count_for_this_packet; 
  } 
} 



The Metadata Section Header marks the start of the metadata section. There 
is one metadata section in a RealMedia file and it is expected to be at the 
end of the file. The following structure describes the Metadata section 
header:  

The Metadata Section Header contains the following fields:  

object_id  

The unique object ID for the Metadata Section Header ("RMMD"). 
The size of this member is 32 bits. 

size  

The size of the full metadata section in bytes. The size of this member 
is 32 bits. 

Metadata Tag  

The metadata tag of a RealMedia file consists of a series of properties. The 
properties are represented as a tree hierarchy with one unnamed root 
property. Each property contains a type and value, as well as multiple 
(optional) sub-properties. The following structure describes the details of 
the metadata tag:  

The Metadata Tag contains the following fields:  

object_id  

The unique object ID for the Metadata Tag ("RJMD"). The size of this 
member is 32 bits. 

object_version  

The version of the Metadata Tag. The size of this member is 32 bits. 

properties[]  

The MetadataProperty structure that makes up the metadata tag (see 
"Metadata Property Structure" for more details). As mentioned above, 

MetadataSectionHeader 
{ 
  u_int32        object_id; 
  u_int32        size; 
}  

MetadataTag 
{ 
  u_int32        object_id; 
  u_int32        object_version; 
  u_int8[]        properties; 
}  



the properties will be represented as one unnamed root metadata 
property with multiple sub-properties, each with their own optional 
sub-properties. These will be nested, as in a tree. 

Metadata Property Structure  

The following sample describes the details of the MetadataProperty 
structure:  

The MetadataProperty structure contains the following fields:  

size  

The size of the MetadataProperty structure in bytes. The size of this 
member is 32 bits. 

type  

The type of the value data. The data in the value array can be one of 
the following types: 

� MPT_TEXT 

The value is string data. 

� MPT_TEXTLIST 

The value is a separated list of strings, separator specified as sub-
property/type descriptor. 

� MPT_FLAG 

The value is a boolean flag—either 1 byte or 4 bytes, check size 
value. 

MetadataProperty 
{ 
  u_int32        size; 
  u_int32        type; 
  u_int32        flags; 
  u_int32        value_offset; 
  u_int32        subproperties_offset; 
  u_int32        num_subproperties; 
  u_int32        name_length; 
  u_int8[name_length]    name; 
  u_int32        value_length; 
  u_int8[value_length]    value; 
  PropListEntry[num_subproperties]    subproperties_list; 
  MetadataProperty[num_subproperties]    subproperties; 
} 



� MPT_ULONG 

The value is a four-byte integer. 

� MPT_BINARY 

The value is a byte stream. 

� MPT_URL 

The value is string data. 

� MPT_DATE 

The value is a string representation of the date in the form: 
YYYYmmDDHHMMSS (m = month, M = minutes). 

� MPT_FILENAME 

The value is string data. 

� MPT_GROUPING 

This property has subproperties, but its own value is empty. 

� MPT_REFERENCE 

The value is a large buffer of data, use sub-properties/type 
descriptors to identify mime-type. 

The size of this member is 32 bits. 

flags  

Flags describing the property. The following flags are defined these 
can be used in combination: 

� MPT_READONLY 

Read only, cannot be modified. 

� MPT_PRIVATE 

Private, do not expose to users. 

� MPT_TYPE_DESCRIPTOR 



Type descriptor used to further define type of value. 

The size of this member is 32 bits. 

value_offset  

The offset to the value_length , relative to the beginning of the 
MetadataProperty structure. The size of this member is 32 bits. 

subproperties_offset  

The offset to the subproperties_list , relative to the beginning of 
the MetadataProperty structure. The size of this member is 32 bits. 

num_subproperties  

The number of subproperties for this MetadataProperty structure. 
The size of this member is 32 bits. 

name_length  

The length of the name data, including the null-terminator. The size of 
this member is 32 bits. 

name[]  

The name of the property (string data). The size of this member is 
designated by name_length . 

value_length  

The length of the value data. The size of this member is 32 bits. 

value[]  

The value of the property (data depends on the type specified for the 
property). The size of this member is designated by value_length . 

subproperties_list[]  

The list of PropListEntry structures. The PropListEntry structure 
identifies the offset for each property (see "PropListEntry Structure" 
for more details. The size of this member is num_subproperties * 
sizeof(PropListEntry). 

subproperties[]  

The sub-properties. Each sub-property is a MetadataProperty 
structure with its own size, name, value, sub-properties, and so on. The 
size of this member is variable. 

PropListEntry Structure  

The following sample describes the details of the PropListEntry 
structure:  



The PropListEntry structure contains the following fields:  

offset  

The offset for this indexed sub-property, relative to the beginning of 
the containing MetadataProperty . The size of this member is 32 
bits. 

num_props_for_name  

The number of sub-properties that share the same name. For example, 
a lyrics property could have multiple versions as differentiated by the 
language sub-property type descriptor. The size of this member is 32 
bits. 

Metadata Section Footer  

The metadata section footer marks the end of the metadata section of a 
RealMedia file. The metadata section footer contains the size of the 
metadata tag. Since the metadata section is at the end of the file, the section 
footer lies a fixed offset of 140 bytes from the end of the file. The size of 
the metadata tag enables a file reader to quickly locate the beginning of the 
metadata tag relative to the end of the file. The following structure 
describes the Metadata section footer.  

The MetadataSectionFooter contains the following fields:  

object_id  

The unique object ID for the Metadata Section Footer ("RMJE"). The 
size of this member is 32 bits. 

object_version  

The version of the metadata tag. The size of this member is 32 bits. 

size  

The size of the preceding metadata tag. The size of this member is 32 
bits. 

PropListEntry 
{ 
  u_int32        offset; 
  u_int32        num_props_for_name; 
}  

MetadataSectionFooter 
{ 
  u_int32        object_id; 
  u_int32        object_version; 
  u_int32        size; 
}  



ID3v1 Tag  

The ID3v1 Tag is at the end of the metadata section and is expected to be at 
the end of the entire file. It is a fixed size—128 bytes—and begins with the 
characters "TAG". Futher information about the informal ID3v1 standard 
can be found at http://id3.org/id3v1.html .  

   

 

©2005 RealNetworks, Inc.  
For more information, visit RealNetworks  
Click here if the Table of Contents frame is not visible at the left side of 
your screen. 


